[1] |
Cao Y, Li M, Lu J, Liu J, Amine K 2019 Bridging the academic and industrial metrics for next-generation practical batteries Nat. Nanotechnol. 14 200-7 doi: 10.1038/s41565-019-0371-8
|
[2] |
Dunn B, Haresh K, Jean-Marie T 2011 Electrical energy storage for the grid: a battery of choices Science 334 928-35 doi: 10.1126/science.1212741
|
[3] |
Armand M, Tarascon J M 2008 Building better batteries Nature 451 652-67 doi: 10.1038/451652a
|
[4] |
Zeng Z, et al 2018 Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries Nat. Energy 3 674-81 doi: 10.1038/s41560-018-0196-y
|
[5] |
Peng C, Xu X, Li F, Xi L, Zeng J, Song X, Wan X, Zhao J, Liu J 2023 Recent progress of promising cathode candidates for sodium-ion batteries: current issues, strategy, challenge, and prospects Small Struct. 4 2300150 doi: 10.1002/sstr.202300150
|
[6] |
Liu Z, et al 2021 Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na+ Angew. Chem., Int. Ed. 60 20960-9 doi: 10.1002/anie.202108109
|
[7] |
Liu Z, Wu J, Zeng J, Li F, Peng C, Xue D, Zhu M, Liu J 2023 Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries Adv. Energy Mater. 13 2301471 doi: 10.1002/aenm.202301471
|
[8] |
Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Research development on sodium-ion batteries Chem. Rev. 23 11636-82 doi: 10.1021/cr500192f
|
[9] |
Whittingham M S 1976 Electrical energy storage and intercalation chemistry Science 192 1126-7 doi: 10.1126/science.192.4244.1126
|
[10] |
Zhang H, et al 2020 From solid-solution electrodes and the rocking-chair concept to today’s batteries Angew. Chem., Int. Ed. 59 534-8 doi: 10.1002/anie.201913923
|
[11] |
Newman G H, Klemann L P 1980 Ambient temperature cycling of an Na-TiS2 cell J. Electrochem. Soc. 127 2097 doi: 10.1149/1.2129353
|
[12] |
Delmas C, Braconnier J, Fouassier C, Hagenmuller P 1981 Electrochemical intercalation of sodium in NaxCoO2 bronzes Solid State Ion. 3-4 165-9 doi: 10.1016/0167-2738(81)90076-X
|
[13] |
Yoshino A 2012 The birth of the lithium-ion battery Angew. Chem., Int. Ed. 51 5798-800 doi: 10.1002/anie.201105006
|
[14] |
Asher R, Wilson S 1958 Lamellar compound of sodium with graphite Nature 181 409-10 doi: 10.1038/181409a0
|
[15] |
Ge P, Fouletier M 1988 Electrochemical intercalation of sodium in graphite Solid State Ion. 28-30 1172-5 doi: 10.1016/0167-2738(88)90351-7
|
[16] |
Du J, Gao S, Shi P, Fan J, Xu Q, Min Y 2020 Three-dimensional carbonaceous for potassium ion batteries anode to boost rate and cycle life performance J. Power Sources 451 227727 doi: 10.1016/j.jpowsour.2020.227727
|
[17] |
Wang J, Xi L, Peng C, Song X, Wan X, Sun L, Liu M, Liu J 2024 Recent progress in hard carbon anodes for sodium-ion batteries Adv. Eng. Mater. 26 2302063 doi: 10.1002/adem.202302063
|
[18] |
Liu Z, et al 2023 Regulating electron distribution of P2-type layered oxide cathodes for practical sodium-ion batteries Mater. Today 68 22-33 doi: 10.1016/j.mattod.2023.06.021
|
[19] |
Moriwake H, Kuwabara A, Fisher C A J, Ikuhara Y 2017 Why is sodium-intercalated graphite unstable? RSC Adv. 7 36550-4 doi: 10.1039/C7RA06777A
|
[20] |
Nobuhara K, Nakayama H, Nose M, Nakanishi S, Iba H 2013 First-principles study of alkali metal-graphite intercalation compounds J. Power Sources 243 585-7 doi: 10.1016/j.jpowsour.2013.06.057
|
[21] |
Stevens D A, Dahn J R 2000 High capacity anode materials for rechargeable sodiumion batteries J. Electrochem. Soc. 147 1271 doi: 10.1149/1.1393348
|
[22] |
Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S 2012 Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell Electrochem. Commun. 21 65-66 doi: 10.1016/j.elecom.2012.05.017
|
[23] |
Li H, Wang K, Zhou M, Li W, Tao H, Wang R, Cheng S, Jiang K 2019 Facile tailoring of multidimensional nanostructured Sb for sodium storage applications ACS Nano 13 9533-40 doi: 10.1021/acsnano.9b04520
|
[24] |
Ma J, Prieto A L 2019 Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode Chem. Commun. 55 6938-41 doi: 10.1039/C9CC00001A
|
[25] |
Xu X, Liu Z, Ji S, Wang Z, Ni Z, Lv Y, Liu J, Liu J 2019 Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries Chem. Eng. J. 359 765-74 doi: 10.1016/j.cej.2018.11.191
|
[26] |
Jian Z, Zhao B, Liu P, Li F, Zheng M, Chen M, Shi Y, Zhou H 2014 Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries Chem. Commun. 50 1215-7 doi: 10.1039/C3CC47977C
|
[27] |
Su D, Ahn H J, Wang G 2013 SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance Chem. Commun. 49 3131-3 doi: 10.1039/c3cc40448j
|
[28] |
Xu X, Li F, Zhang D, Ji S, Huo Y, Liu J 2023 Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium-/sodium-ion storage Carbon Neutralization 2 54-62 doi: 10.1002/cnl2.40
|
[29] |
Senguttuvan P, Rousse G, Seznec V, Tarascon J-M, Palacín M R 2011 Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries Chem. Mater. 23 4109-11 doi: 10.1021/cm202076g
|
[30] |
Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y-S, Li H, Yang X-Q, Chen L, Huang X 2013 A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries Nat. Commun. 4 2365 doi: 10.1038/ncomms3365
|
[31] |
Wang Y, Xiao R, S H Y, Avdeev M, Chen L 2015 P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries Nat. Commun. 6 6954 doi: 10.1038/ncomms7954
|
[32] |
Wang H, Feng P, Fu F, Yu X, Yang D, Zhang W, Niu L, Qiu X 2022 Ligninderived carbon materials for catalysis and electrochemical energy storage Carbon Neutralization 1 277-97 doi: 10.1002/cnl2.29
|
[33] |
Nagmani, Kumar A, Puravankara S 2022 Optimizing ultramicroporous hard carbon spheres in carbonate esterbased electrolytes for enhanced sodium storage in half/fullcell sodiumion batteries Battery Energy 1 20220007 doi: 10.1002/bte2.20220007
|
[34] |
Abouimrane A, Weng W, Eltayeb H, Cui Y, Niklas J, Poluektov O, Amine K 2012 Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells Energy Environ. Sci. 5 9632-8 doi: 10.1039/c2ee22864e
|
[35] |
Kim H, Kwon J E, Lee B, Hong J, Lee M, Park S Y, Kang K 2015 High energy organic cathode for sodium rechargeable batteries Chem. Mater. 27 7258-64 doi: 10.1021/acs.chemmater.5b02569
|
[36] |
Luo W, Allen M, Raju V, Ji X 2014 An organic pigment as a highperformance cathode for sodiumion batteries Adv. Energy Mater. 4 1400554 doi: 10.1002/aenm.201400554
|
[37] |
Wang Q, Zhu X, Liu Y, Fang Y, Zhou X, Bao J 2018 Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries Carbon 127 658-66 doi: 10.1016/j.carbon.2017.11.054
|
[38] |
Qi Y, Lu Y, Ding F, Zhang Q, Li H, Huang X, Chen L, Hu Y-S 2019 Slopedominated carbon anode with high specific capacity and superior rate capability for high safety Naion batteries Angew. Chem., Int. Ed. 58 4361-5 doi: 10.1002/anie.201900005
|
[39] |
Franklin R E 1951 Crystallite growth in graphitizing and non-graphitizing carbons Proc. R. Soc. A 209 196-218 doi: 10.1098/rspa.1951.0197
|
[40] |
Wang G, Yu M, Feng X 2021 Carbon materials for ion-intercalation involved rechargeable battery technologies Chem. Soc. Rev. 50 2388-443 doi: 10.1039/d0cs00187b
|
[41] |
Köchling K H, et al 1982 International committee for characterization and terminology of carbon “first publication of 30 tentative definitions” Carbon 20 445-9 doi: 10.1016/0008-6223(82)90046-x
|
[42] |
Liu Y, Xue J S, Zheng T, Dahn J R 1996 Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins Carbon 34 193-200 doi: 10.1016/0008-6223(96)00177-7
|
[43] |
Buiel E R, George A E, Dahn J R 1999 Model of micropore closure in hard carbon prepared from sucrose Carbon 37 1399-407 doi: 10.1016/S0008-6223(98)00335-2
|
[44] |
Stevens D A, Dahn J R 2001 The mechanisms of lithium and sodium insertion in carbon materials J. Electrochem. Soc. 148 A803 doi: 10.1149/1.1379565
|
[45] |
Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K 2011 Electrochemical Na insertion and solid electrolyte interphase for hardcarbon electrodes and application to Naion batteries Adv. Funct. Mater. 21 3859-67 doi: 10.1002/adfm.201100854
|
[46] |
Li Y, Hu Y S, Titirici M M, Chen L, Huang X 2016 Hard carbon microtubes made from renewable cotton as highperformance anode material for sodiumion batteries Adv. Energy Mater. 6 1600659 doi: 10.1002/aenm.201600659
|
[47] |
Qiu S, et al 2017 Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for highefficiency sodium ion storage Adv. Energy Mater. 7 1700403 doi: 10.1002/aenm.201700403
|
[48] |
Zhang B, Ghimbeu C M, Laberty C, VixGuterl C, Tarascon J-M 2016 Correlation between microstructure and Na storage behavior in hard carbon Adv. Energy Mater. 6 1501588 doi: 10.1002/aenm.201501588
|
[49] |
Bommier C, Surta T W, Dolgos M, Ji X 2015 New mechanistic insights on Na-ion storage in nongraphitizable carbon Nano Lett. 15 5888-92 doi: 10.1021/acs.nanolett.5b01969
|
[50] |
Zeng Y, Yang J, Yang H, Yang Y, Zhao J 2024 Bridging microstructure and sodium-ion storage mechanism in hard carbon for sodium ion batteries ACS Energy Lett. 9 1184-91 doi: 10.1021/acsenergylett.3c02751
|
[51] |
Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B 2019 Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons Adv. Energy Mater. 9 1901351 doi: 10.1002/aenm.201901351
|
[52] |
Zhao J, et al 2023 Catalytic defectrepairing using manganese ions for hard carbon anode with highcapacity and highinitialCoulombicefficiency in sodiumion batteries Adv. Energy Mater. 13 2300444 doi: 10.1002/aenm.202300444
|
[53] |
Au H, et al 2020 A revised mechanistic model for sodium insertion in hard carbons Energy Environ. Sci. 13 3469-79 doi: 10.1039/D0EE01363C
|
[54] |
Li Q, et al 2022 Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries Natl Sci. Rev. 9 118-26 doi: 10.1093/nsr/nwac084
|
[55] |
EinEli Y 1999 A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Liion cells electrochemical and solid-state letters Electrochem. Solid-State Lett. 2 212 doi: 10.1149/1.1390787
|
[56] |
Li Z, Chen Y, Jian Z, Jiang H, Razink J J, Stickle W F, Neuefeind J C, Ji X 2018 Defective hard carbon anode for Na-ion batteries Chem. Mater. 30 4536-42 doi: 10.1021/acs.chemmater.8b00645
|
[57] |
Datta D, Li J, Shenoy V B 2014 Defective graphene as a high-capacity anode material for Na-and Ca-ion batteries ACS Appl. Mater. Interfaces 6 1788-95 doi: 10.1021/am404788e
|
[58] |
Tsai P, Chung S C, Lin S, Yamada A 2015 Ab initio study of sodium intercalation into disordered carbon J. Mater. Chem. A 3 9763-8 doi: 10.1039/C5TA01443C
|
[59] |
Sun D, Luo B, Wang H, Tang Y, Ji X, Wang L 2019 Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency Nano Energy 64 103937 doi: 10.1016/j.nanoen.2019.103937
|
[60] |
Gomez-Martin A, Martinez-Fernandez J, Ruttert M, Winter M, Placke T, Ramirez-Rico J 2019 Correlation of structure and performance of hard carbons as anodes for sodium ion batteries Chem. Mater. 31 7288-99 doi: 10.1021/acs.chemmater.9b01768
|
[61] |
Zheng J, Guan C, Li H, Wang D, Lai Y, Li S, Li J, Zhang Z 2024 Unveiling the microscopic origin of irreversible capacity loss of hard carbon for sodiumion batteries Adv. Energy Mater. 14 2303584 doi: 10.1002/aenm.202303584
|
[62] |
Wang S, Dai G, Yang H, Luo Z 2017 Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review Prog. Energy Combust. Sci. 62 33-86 doi: 10.1016/j.pecs.2017.05.004
|
[63] |
Hu B, Zhang B, Xie W, Jiang X-Y, Liu J, Lu Q 2020 Recent progress in quantum chemistry modeling on the pyrolysis mechanisms of lignocellulosic biomass Energy Fuels 34 10384-440 doi: 10.1021/acs.energyfuels.0c01948
|
[64] |
Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S 2017 Synthesis of hard carbon from argan shells for Na-ion batteries J. Mater. Chem. A 5 9917-28 doi: 10.1039/C7TA01394A
|
[65] |
Xiao L, Lu H, Fang Y, Sushko M L, Cao Y, Ai X, Yang H, Liu J 2018 Lowdefect and lowporosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode Adv. Energy Mater. 8 1703238 doi: 10.1002/aenm.201703238
|
[66] |
Guo S, Chen Y, Tong L, Cao Y, Jiao H, long Z, Qiu X 2022 Biomass hard carbon of high initial coulombic efficiency for sodium-ion batteries: preparation and application Electrochim. Acta 410 140017 doi: 10.1016/j.electacta.2022.140017
|
[67] |
Zhang T, Mao J, Liu X, Xuan M, Bi K, Zhang X L, Hu J, Fan J, Chen S, Shao G 2017 Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries RSC Adv. 2017 41504-11 doi: 10.1039/C7RA07231G
|
[68] |
Simone V, Boulineau A, De Geyer A, Rouchon D, Simonin L, Martinet S 2016 Hard carbon derived from cellulose as anode for sodium ion batteries: dependence of electrochemical properties on structure J. Energy Chem. 25 761-8 doi: 10.1016/j.jechem.2016.04.016
|
[69] |
Alvin S, Yoon D, Chandra C, Susanti R F, Chang W, Ryu C, Kim J 2019 Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries J. Power Sources 430 157-68 doi: 10.1016/j.jpowsour.2019.05.013
|
[70] |
Titirici M M, White R J, Brun N, Budarin V L, Su D S, Del Monte F, Clark J H, MacLachlan M J 2015 Sustainable carbon materials Chem. Soc. Rev. 44 250-90 doi: 10.1039/c4cs00232f
|
[71] |
Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M 2010 Engineering carbon materials from the hydrothermal carbonization process of biomass Adv. Mater. 22 813-28 doi: 10.1002/adma.200902812
|
[72] |
Titirici M M, White R J, Falco C, Sevilla M 2012 Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage Energy Environ. Sci. 5 6796-822 doi: 10.1039/c2ee21166a
|
[73] |
Li Y, Xu S, Wu X, Yu J, Wang Y, Hu Y-S, Li H, Chen L, Huang X 2015 Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries J. Mater. Chem. A 3 71-77 doi: 10.1039/C4TA05451B
|
[74] |
Qatarneh A F, Dupont C, Michel J, Simonin L, Beda A, Matei Ghimbeu C, Ruiz-Villanueva V, da Silva D, Piégay H, Franca M J 2021 River driftwood pretreated via hydrothermal carbonization as a sustainable source of hard carbon for Na-ion battery anodes J. Environ. Chem. Eng. 9 106604 doi: 10.1016/j.jece.2021.106604
|
[75] |
Xu Z, Wang J, Guo Z, Xie F, Liu H, Yadegari H, Tebyetekerwa M, Ryan M P, Hu Y-S, Titirici M-M 2022 The role of hydrothermal carbonization in sustainable sodiumion battery anodes Adv. Energy Mater. 12 2200208 doi: 10.1002/aenm.202200208
|
[76] |
Yang B, Wang J, Zhu Y, Ji K, Wang C, Ruan D, Xia Y 2021 Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries J. Power Sources 492 229656 doi: 10.1016/j.jpowsour.2021.229656
|
[77] |
Zhen Y, Chen Y, Li F, Guo Z, Hong Z, Titirici M-M 2021 Ultrafast synthesis of hard carbon anodes for sodium-ion batteries Proc. Natl Acad. Sci. 118 e2111119118 doi: 10.1073/pnas.2111119118
|
[78] |
Zhang X, Dong X, Qiu X, Cao Y, Wang C, Wang Y, Xia Y 2020 Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries J. Power Sources 476 228550 doi: 10.1016/j.jpowsour.2020.228550
|
[79] |
Fan C, Zhang R, Luo X, Hu Z, Zhou W, Zhang W, Liu J, Liu J 2023 Epoxy phenol novolac resin: a novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries Carbon 205 353-64 doi: 10.1016/j.carbon.2023.01.048
|
[80] |
Tang X, Xie F, Lu Y, Chen Z, Li X, Li H, Huang X, Chen L, Pan Y, Hu Y-S 2023 Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes Nano Res. 16 12579-86 doi: 10.1007/s12274-023-5643-9
|
[81] |
Lu Y, Zhao C, Qi X, Qi Y, Li H, Huang X, Chen L, Hu Y-S 2018 Preoxidationtuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance Adv. Energy Mater. 8 1800108 doi: 10.1002/aenm.201800108
|
[82] |
Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J, Komaba S 2018 Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries J. Mater. Chem. A 6 16844-8 doi: 10.1039/C8TA05203D
|
[83] |
Wei Z, Zhao H X, Niu Y B, Zhang S-Y, Wu Y-B, Yan H-J, Xin S, Yin Y-X, Guo Y-G 2021 Insights into the pre-oxidation process of phenolic resin-based hard carbon for sodium storage Mater. Chem. Front. 5 3911-7 doi: 10.1039/D1QM00077B
|
[84] |
Wang H, Liu S T, Lei C, Qiu H, Jiang W, Sun X, Zhang Y, He W 2024 P-doped hard carbon material for anode of sodium ion battery was prepared by using polyphosphoric acid modified petroleum asphalt as precursor Electrochim. Acta 477 143812 doi: 10.1016/j.electacta.2024.143812
|
[85] |
Li Y, Mu L, Li H, Chen L, Huang X 2016 Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries Energy Storage Mater. 2 139-45 doi: 10.1016/j.ensm.2015.10.003
|
[86] |
Li Y, Hu Y S, Qi X, Rong X, Li H, Huang X, Chen L 2016 Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications Energy Storage Mater. 5 191-7 doi: 10.1016/j.ensm.2016.07.006
|
[87] |
Li R, et al 2023 Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries Carbon 215 118489 doi: 10.1016/j.carbon.2023.118489
|
[88] |
Arie A A, Tekin B, Demir E, Demir-Cakan R 2019 Hard carbons derived from waste tea bag powder as anodes for sodium ion battery Mater. Technol. 34 515-24 doi: 10.1080/10667857.2019.1586087
|
[89] |
Arie A, Tekin B, Demir E, Demir-Cakan R 2020 Utilization of the Indonesian’s spent tea leaves as promising porous hard carbon precursors for anode materials in sodium ion batteries Waste Biomass Valorization 11 3121-31 doi: 10.1007/s12649-019-00624-x
|
[90] |
Muruganantham R, Wang F, Liu W 2022 A green route N, S-doped hard carbon derived from fruit-peel biomass waste as an anode material for rechargeable sodium-ion storage applications Electrochim. Acta 424 140573 doi: 10.1016/j.electacta.2022.140573
|
[91] |
Lee H V, Hamid S B A, Zain S K 2014 Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process Sci. World J. 2014 631013 doi: 10.1155/2014/631013
|
[92] |
Tang Z, et al 2023 Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery Nat. Commun. 14 6024 doi: 10.1038/s41467-023-39637-5
|
[93] |
Zheng Y, Wang Y, Lu Y, Hu Y-S, Li J 2017 A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode Nano Energy 39 489-98 doi: 10.1016/j.nanoen.2017.07.018
|
[94] |
Li Y, et al 2019 Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance Adv. Energy Mater. 9 1902852 doi: 10.1002/aenm.201902852
|
[95] |
Asfaw H D, Gond R, Kotronia A, Tai C W, Younesi R 2022 Bio-derived hard carbon nanosheets with high rate sodium-ion storage characteristics Sustain. Mater. Technol. 32 e00407 doi: 10.1016/j.susmat.2022.e00407
|
[96] |
Lotfabad E M, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D 2014 Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li J. Mater. Chem. A 2 19685-95 doi: 10.1039/C4TA04995K
|
[97] |
Wang J, Zhao J, He X, Qiao Y, Li L, Chou S L 2022 Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries Sustain. Mater. Technol. 33 e00446 doi: 10.1016/j.susmat.2022.e00446
|
[98] |
Xu T, Qiu X, Zhang X, Xia Y 2023 Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance Chem. Eng. J. 452 139514 doi: 10.1016/j.cej.2022.139514
|
[99] |
He X X, et al 2023 Achieving allplateau and highcapacity sodium insertion in topological graphitized carbon Adv. Mater. 35 2302613 doi: 10.1002/adma.202302613
|
[100] |
He Q, et al 2024 Teaderived sustainable materials Adv. Funct. Mater. 34 2310226 doi: 10.1002/adfm.202310226
|
[101] |
Wang J, Yan L, Ren Q, Fan L, Zhang F, Shi Z 2018 Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery Electrochim. Acta 291 188-96 doi: 10.1016/j.electacta.2018.08.136
|
[102] |
Chen Y, Li F, Guo Z, Song Z, Lin Y, Lin W, Zheng L, Huang Z, Hong Z, Titirici M-M 2023 Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery J. Power Sources 557 232534 doi: 10.1016/j.jpowsour.2022.232534
|
[103] |
Wei Y, Ji X, Lu Z, Jin H, Kong X, Jin S, Ji H 2024 Gelatinderived hard carbon achieves effective control of microstructure toward fast and durable sodium storage Adv. Funct. Mater. 34 2315408 doi: 10.1002/adfm.202315408
|
[104] |
Zhang G, Zhao Y, Yan L, Zhang L, Shi Z 2021 Sycamore fruit seedbased hard carbon anode material with high cycle stability for sodiumion battery J. Mater. Sci., Mater. Electron. 32 5645-54 doi: 10.1007/s10854-021-05286-x
|
[105] |
Nita C, Zhang B, Dentzer J, Matei Ghimbeu C 2021 Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries J. Energy Chem. 58 207-18 doi: 10.1016/j.jechem.2020.08.065
|
[106] |
Xie F, Xu Z, Jensen A C S, Au H, Lu Y, AraulloPeters V, Drew A J, Hu Y-S, Titirici M-M 2019 Hard-soft carbon composite anodes with synergistic sodium storage performance Adv. Funct. Mater. 29 1901072 doi: 10.1002/adfm.201901072
|
[107] |
Zhang H, Ming H, Zhang W, Cao G, Yang Y 2017 Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery ACS Appl. Mater. Interfaces 9 23766-74 doi: 10.1021/acsami.7b05687
|
[108] |
Yu C, Li Y, Ren H, Qian J, Wang S, Feng X, Liu M, Bai Y, Wu C 2023 Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodiumion batteries Carbon Energy 5 e220 doi: 10.1002/cey2.220
|
[109] |
Lu H, Chen X, Jia Y, Chen H, Wang Y, Ai X, Yang H, Cao Y 2019 Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries Nano Energy 64 103903 doi: 10.1016/j.nanoen.2019.103903
|
[110] |
Chen X, et al 2022 An overall understanding of sodium storage behaviors in hard carbons by an “adsorptionintercalation/filling” hybrid mechanism Adv. Energy Mater. 12 2200886 doi: 10.1002/aenm.202200886
|
[111] |
Sun H, Zhang Q, Ma Y, Li Z, Zhang D, Sun Q, Wang Q, Liu D, Wang B 2024 Unraveling the mechanism of sodium storage in low potential region of hard carbons with different microstructures Energy Storage Mater. 67 103269 doi: 10.1016/j.ensm.2024.103269
|
[112] |
Zhang S W, Lv W, Luo C, You C-H, Zhang J, Pan Z-Z, Kang F-Y, Yang Q-H 2016 Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries Energy Storage Mater. 3 18-23 doi: 10.1016/j.ensm.2015.12.004
|
[113] |
Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski A W, Konno H, Inagaki M 2010 A review of the control of pore structure in MgO-templated nanoporous carbons Carbon 48 2690-707 doi: 10.1016/j.carbon.2010.03.064
|
[114] |
Liu L, Yibibulla T, Yang Y, Hassan S U, Hou L, Kuang D, Mead J L, Deng L, Wang S 2024 Design and microwave absorption characteristics of porous lamellar hard carbon materials Microporous Mesoporous Mater. 369 113041 doi: 10.1016/j.micromeso.2024.113041
|
[115] |
Kyotani T, Ma Z, Tomita A 2003 Template synthesis of novel porous carbons using various types of zeolites Carbon 41 1451-9 doi: 10.1016/S0008-6223(03)00090-3
|
[116] |
Ryoo R, Joo S H, Jun S 1999 Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation J. Phys. Chem. B 103 7743-6 doi: 10.1021/jp991673a
|
[117] |
Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, Ando H, Gotoh K, Komaba S 2021 MgOtemplate synthesis of extremely high capacity hard carbon for Naion battery Angew. Chem., Int. Ed. 60 5114-20 doi: 10.1002/anie.202013951
|
[118] |
Yin X, Lu Z, Wang J, Feng X, Roy S, Liu X, Yang Y, Zhao Y, Zhang J 2022 Enabling fast Na+ transfer kinetics in the wholevoltageregion of hardcarbon anodes for ultrahighrate sodium storage Adv. Mater. 34 2109282 doi: 10.1002/adma.202109282
|
[119] |
Meng Q, Lu Y, Ding F, Zhang Q, Chen L, Hu Y-S 2019 Tuning the closed pore structure of hard carbons with the highest Na storage capacity ACS Energy Lett. 4 2608-12 doi: 10.1021/acsenergylett.9b01900
|
[120] |
Zheng Z, Hu S, Yin W, Peng J, Wang R, Jin J, He B, Gong Y, Wang H, Fan H J 2024 CO2etching creates abundant closed pores in hard carbon for highplateaucapacity sodium storage Adv. Energy Mater. 14 2303064 doi: 10.1002/aenm.202303064
|
[121] |
Dou X, Hasa I, Saurel D, Jauregui M, Buchholz D, Rojo T, Passerini S 2018 Impact of the acid treatment on lignocellulosic biomass hard carbon for sodiumion battery anodes ChemSusChem 11 3276-85 doi: 10.1002/cssc.201801148
|
[122] |
Wang H, Yu W, Shi J, Mao N, Chen S, Liu W 2016 Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries Electrochim. Acta 188 103-10 doi: 10.1016/j.electacta.2015.12.002
|
[123] |
Yu Z, Zhao Z, Peng T 2021 Coralloid carbon material based on biomass as a promising anode material for lithium and sodium storage New J. Chem. 45 7138-44 doi: 10.1039/D0NJ01769H
|
[124] |
Singh G, Ruban A M, Geng X, Vinu A 2023 Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation Chem. Eng. J. 451 139045 doi: 10.1016/j.cej.2022.139045
|
[125] |
Wang K, Sun F, Wang H, Wu D, Chao Y, Gao J, Zhao G 2022 Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor Adv. Funct. Mater. 32 2203725 doi: 10.1002/adfm.202203725
|
[126] |
Cheng D, Li Z, Zhang M, Duan Z, Wang J, Wang C 2023 Engineering ultrathin carbon layer on porous hard carbon boosts sodium storage with high initial Coulombic efficiency ACS Nano 17 19063-75 doi: 10.1021/acsnano.3c04984
|
[127] |
Khaleghian H, Molaverdi M, Karimi K 2017 Silica removal from rice straw to improve its hydrolysis and ethanol production Ind. Eng. Chem. Res. 56 9793-8 doi: 10.1021/acs.iecr.7b02830
|
[128] |
Singh S, Kaur G, Singh D P, Arya S K, Krishania M 2024 Exploring rice straw’s potential from a sustainable biorefinery standpoint: towards valorization and diverse product production process Process Saf. Environ. Prot. 184 314-31 doi: 10.1016/j.psep.2024.01.105
|
[129] |
Li P, Yu L, Ji S, Xu X, Liu Z, Liu J, Liu J 2019 Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries Chem. Eng. J. 374 502-10 doi: 10.1016/j.cej.2019.05.198
|
[130] |
Li T, Liu Z, Gu Y, Tang Y, Huang F 2020 Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency J. Alloy Compd. 817 152703 doi: 10.1016/j.jallcom.2019.152703
|
[131] |
Zhang H, Zhang W, Huang F 2022 Graphene inducing graphitization: towards a hard carbon anode with ultrahigh initial Coulombic efficiency for sodium storage Chem. Eng. J. 434 134503 doi: 10.1016/j.cej.2022.134503
|
[132] |
He X X, et al 2021 Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial Coulombic efficiency for sodium-ion batteries ACS Appl. Mater. Interfaces 13 44358-68 doi: 10.1021/acsami.1c12171
|
[133] |
Li X, Sun J, Zhao W, Lai Y, Yu X, Liu Y 2022 Intergrowth of graphitelike crystals in hard carbon for highly reversible Naion storage Adv. Funct. Mater. 32 2106980 doi: 10.1002/adfm.202106980
|
[134] |
Yu X, Xin L, Li X, Wu Z, Liu Y 2022 Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries Mater. Today 59 25-35 doi: 10.1016/j.mattod.2022.07.013
|
[135] |
Hou L, et al 2023 Boosting the reversible, high-rate Na+ storage capability of the hard carbon anode via the synergistic structural tailoring and controlled presodiation Small 19 2207638 doi: 10.1002/smll.202207638
|
[136] |
Tang J, Kye D, Pol V 2018 Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries J. Power Sources 396 476-82 doi: 10.1016/j.jpowsour.2018.06.067
|
[137] |
Wang Y, Lu J, Dai W, Cheng X, Zuo J, Lei H, Liu W, Fu Z 2024 On the practicability of the solid-state electrochemical pre-sodiation technique on hard carbon anodes for sodium-ion batteries Adv. Funct. Mater. 2403841 doi: 10.1002/adfm.202403841
|
[138] |
Xiao B, et al 2018 Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes Adv. Energy Mater. 8 1801441 doi: 10.1002/aenm.201801441
|
[139] |
Soto F, et al 2017 Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon Adv. Mater. 29 1606860 doi: 10.1002/adma.201606860
|
[140] |
Liu X, Tan Y, Liu T, Wang W, Li C, Lu J, Sun Y 2019 A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batterie Adv. Funct. Mater. 29 1903795 doi: 10.1002/adfm.201903795
|
[141] |
Fang H, Gao S, Ren M, Huang Y, Cheng F, Chen J, Li F 2023 Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries Angew. Chem., Int. Ed. 62 e202214717 doi: 10.1002/anie.202214717
|
[142] |
Man Q, Wei C, Tian K, Shen H, Zhang X, Bai X, Xi B, Xiong S, Feng J 2024 Molecular-level design of high flash point solvents enables high-safety and dual-function chemical presodiation of hard carbon and alloy anodes for high-performance sodium-ion batteries Adv. Energy Mater. 14 2401016 doi: 10.1002/aenm.202401016
|
[143] |
Li X, Yan P, Engelhard M, Crawford A J, Viswanathan V V, Wang C, Liu J, Sprenkle V L 2016 The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries Nano Energy 27 664-72 doi: 10.1016/j.nanoen.2016.07.030
|
[144] |
Mao Y, Zhou C, Gong H, Zhang S, Wang X, Liu X, Xiang Q, Sun J 2023 High-efficiency separator capacity-compensation strategy applied to sodium-ion batteries Small 19 2303259 doi: 10.1002/smll.202303259
|
[145] |
Shen B, Zhan R, Dai C, Li Y, Hu L, Niu Y, Jiang J, Wang Q, Xu M 2019 Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells J. Colloid Interface Sci. 553 524-9 doi: 10.1016/j.jcis.2019.06.056
|
[146] |
De Ilarduya J M, Otaegui L, Galcerán M, Acebo L, Shanmukaraj D, Rojo T, Armand M 2019 Towards high energy density, low cost and safe Na-ion full-cell using P2-Na0.67[Fe0.5Mn0.5]O2 and Na2C4O4 sacrificial salt Electrochim. Acta 321 134693 doi: 10.1016/j.electacta.2019.134693
|
[147] |
Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R 2019 Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application Adv. Mater. 31 1808393 doi: 10.1002/adma.201808393
|
[148] |
Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503-618 doi: 10.1021/cr500003w
|
[149] |
Ponrouch A, Marchante E, Courty M, Tarascon J-M, Palacín M R 2012 In search of an optimized electrolyte for Na-ion batteries Energy Environ. Sci. 5 8572-83 doi: 10.1039/c2ee22258b
|
[150] |
Ponrouch A, Dedryvère R, Monti D, Demet A E, Ateba Mba J M, Croguennec L, Masquelier C, Johansson P, Palacín M R 2013 Towards high energy density sodium ion batteries through electrolyte optimization Energy Environ. Sci. 6 2361-9 doi: 10.1039/c3ee41379a
|
[151] |
Goodenough J B, Kim Y 2010 Challenges for rechargeable Li batteries Chem. Mater. 22 587-603 doi: 10.1021/cm901452z
|
[152] |
Xu Z, Lim K, Park K, Yoon G, Seong W M, Kang K 2018 Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries Adv. Funct. Mater. 28 1802099 doi: 10.1002/adfm.201802099
|
[153] |
Zhen Y, Sa R, Zhou K, Ding L, Chen Y, Mathur S, Hong Z 2020 Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes Nano Energy 74 104895 doi: 10.1016/j.nanoen.2020.104895
|
[154] |
Dong R, Zheng L, Bai Y, Ni Q, Li Y, Wu F, Ren H, Wu C 2021 Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes Adv. Mater. 33 2008810 doi: 10.1002/adma.202008810
|
[155] |
Li C, Xu H, Ni L, Qin B, Ma Y, Jiang H, Xu G, Zhao J, Cui G 2023 Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives Adv. Energy Mater. 13 2301758 doi: 10.1002/aenm.202301758
|
[156] |
Tian Z, Zou Y, Liu G, Wang Y, Yin J, Ming J, Alshareef H N 2022 Electrolyte solvation structure design for sodium ion batteries Adv. Sci. 9 2201207 doi: 10.1002/advs.202201207
|
[157] |
Zeng F, Xing L, Zhang W, Xie Z, Liu M, Lin X, Tang G, Mo C, Li W 2023 Innovative discontinuous-SEI constructed in ether-based electrolyte to maximize the capacity of hard carbon anode J. Energy Chem. 79 459-67 doi: 10.1016/j.jechem.2022.12.044
|
[158] |
Patra J, Huang H, Xue W, Wang C, Helal A S, Li J, Chang J-K 2019 Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon Energy Storage Mater. 16 146-54 doi: 10.1016/j.ensm.2018.04.022
|
[159] |
Jin Y, et al 2022 Low-solvation electrolytes for high-voltage sodium-ion batteries Nat. Energy 7 718-25 doi: 10.1038/s41560-022-01055-0
|
[160] |
Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y 2011 Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries ACS Appl. Mater. Interfaces 3 4165-8 doi: 10.1021/am200973k
|
[161] |
Che H, Yang X, Wang H, Liao X-Z, Zhang S S, Wang C, Ma Z-F 2018 Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives J. Power Sources 407 173-9 doi: 10.1016/j.jpowsour.2018.08.025
|
[162] |
Yin X, Zhao Y, Wang X, Feng X, Lu Z, Li Y, Long H, Wang J, Ning J, Zhang J 2021 Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage Small 18 2105568 doi: 10.1002/smll.202105568
|
[163] |
Wang J, Lv W, Ren Q, Yan L, Zhang L, Shi Z 2021 High-performance hard carbon anode prepared via an ingenious green-hydrothermal route Appl. Surf. Sci. 558 149824 doi: 10.1016/j.apsusc.2021.149824
|
[164] |
Zhang S, Sun N, Jiang M, Soomro R A, Xu B 2023 Trash to treasure: sulfonation-assisted transformation of waste masks into high-performance carbon anode for sodium-ion batteries Carbon 209 118034 doi: 10.1016/j.carbon.2023.118034
|
[165] |
Qin L, Xu S, Lu Z, Wang L, Chen L, Zhang D, Tian J, Wei T, Chen J, Guo C 2023 Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries Diam. Relat. Mater. 136 110065 doi: 10.1016/j.diamond.2023.110065
|
[166] |
Song Z, Li F, Mao L, Lin W, Zheng L, Huang Y, Wei M, Hong Z 2023 Sustainable fabrication of a practical hard carbon anode for a sodium-ion battery with unprecedented long cycle life ACS Sustain. Chem. Eng. 11 15020-30 doi: 10.1021/acssuschemeng.3c03765
|
[167] |
Li C, Sun Y, Wu Q, Liang X, Chen C, Xiang H 2020 A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries Chem. Commun. 56 6078-81 doi: 10.1039/D0CC01431A
|
[168] |
Zhang H, Zhang W, Ming H, Pang J, Zhang H, Cao G, Yang Y 2018 Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries Chem. Eng. J. 341 280-8 doi: 10.1016/j.cej.2018.02.016
|