2024 Volume 33 Issue 8
Article Contents

Xiao-Zhen Yan(颜小珍)1, Xing-Zi Zhou(周幸姿)1, Chao-Fei Liu(刘超飞)1, Yin-Li Xu(徐寅力)1, Yi-Bin Huang(黄毅斌)1, Xiao-Wei Sheng(盛晓伟)2, 3, and Yang-Mei Chen(陈杨梅)1, †. 2024: First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8), Chinese Physics B, 33(8): 086301. doi: 10.1088/1674-1056/ad41b8
Citation: Xiao-Zhen Yan(颜小珍)1, Xing-Zi Zhou(周幸姿)1, Chao-Fei Liu(刘超飞)1, Yin-Li Xu(徐寅力)1, Yi-Bin Huang(黄毅斌)1, Xiao-Wei Sheng(盛晓伟)2, 3, and Yang-Mei Chen(陈杨梅)1, †. 2024: First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8), Chinese Physics B, 33(8): 086301. doi: 10.1088/1674-1056/ad41b8

First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)

  • Received Date: 25/02/2024
    Accepted Date: 22/04/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12364003, 11804131, 11704163, 12375014, and 11875149) and the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 20232BAB211022 and 20181BAB211007).

  • Recent studies have shown that the La- and Y-hydrides can exhibit significant superconducting properties under high pressures. In this paper, we investigate the stability, electronic and superconducting properties of LaYH$_{x}$ ($x=2$, 3, 6 and 8) under 0-200 GPa. It is found that LaYH$_{2}$ stabilizes in the $C2/m$ phase at ambient pressure, and transforms to the $Pmmn$ phase at 67 GPa. LaYH$_{3}$ stabilizes in the $C2/m$ phase at ambient pressure, and undergoes phase transitions of $C2/m\to P2_{1}/m\to R3m$ at 12 GPa and 87 GPa, respectively. LaYH$_{6}$ stabilizes in the $P4_{3}2_{1}2$ phase at ambient pressure, and undergoes phase transitions of $P4_{3}2_{1}2\to P4/mmm \to Cmcm$ at 28 GPa and 79 GPa, respectively. LaYH$_{8}$ stabilizes in the $Imma$ phase at 60 GPa and transforms to the $P4/mmm$ phase at 117 GPa. Calculations of the electronic band structures show that the $P4/mmm$-LaYH$_{8}$ and all phases of LaYH$_{2}$ and LaYH$_{3}$ exhibit metallic character. For the metallic phases, we then study their superconducting properties. The calculated superconducting transition temperatures ($T_{\rm c}$) are 0.47 K for $C2/m$-LaYH$_{2}$ at 0 GPa, 0 K for $C2/m$-LaYH$_{3}$ at 0 GPa, and 55.51 K for $P4/mmm$-LaYH$_{8}$ at 50 GPa.
  • 加载中
  • Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175

    Google Scholar Pub Med

    McMahon J M and Ceperley D M 2011 Phys. Rev. Lett. 106 165302

    Google Scholar Pub Med

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002

    Google Scholar Pub Med

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968

    Google Scholar Pub Med

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73

    Google Scholar Pub Med

    Li B, Yang Y, Fan Y, Zhu C, Liu S and Shi Z 2023 Chin. Phys. Lett. 40 097402

    Google Scholar Pub Med

    Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M 2020 Phys. Rep. 856 1

    Google Scholar Pub Med

    Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Nat. Acad. Sci. USA 109 6463

    Google Scholar Pub Med

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528

    Google Scholar Pub Med

    Troyan I A, Semenok D V, Kvashnin A G, Sadakov A V, Sobolevskiy O A, Pudalov V M, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Bergara A, Errea I, Bianco R, Calandra M, Mauri F, Monacelli L, Akashi R and Oganov A R 2021 Adv. Mater. 33 2006832

    Google Scholar Pub Med

    Chen W, Huang X, Semenok D V and Cui T 2023 Nat. Commun. 14 2660

    Google Scholar Pub Med

    Wei Y K, Jia L Q, Fang Y Y, Wang L J, Qian Z X, Yuan J N, Selvaraj G, Ji G F and Wei D Q 2021 Int. J. Quantum Chem. 121 e26459

    Google Scholar Pub Med

    Shao M, Chen S, Chen W, Zhang K, Huang X and Cui T 2021 Inorg. Chem. 60 15330

    Google Scholar Pub Med

    Li Y, Hao J, Liu H, Tse J S, Wang Y and Ma Y 2015 Sci. Rep. 5 9948

    Google Scholar Pub Med

    Semenok D V, Troyan I A, Ivanova A G, Kvashnin A G, Kruglov I A, Hanfland M, Sadakov A V, Sobolevskiy O A, Pervakov K S, Lyubutin I S, Glazyrin K V, Giordano N, Karimov D N, Vasiliev A L, Akashi R, Pudalov V M and Oganov A R 2021 Mat. Today 48 18

    Google Scholar Pub Med

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001

    Google Scholar Pub Med

    Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E and Eremets M I 2021 Nat. Commun. 12 5075

    Google Scholar Pub Med

    He D C, Shao H X and Wei Y K 2015 Can. J. Phys. 93 1630

    Google Scholar Pub Med

    Wang Y, Lv J, Zhu L and Ma Y J P R B 2010 Phys. Rev. B 82 094116

    Google Scholar Pub Med

    Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063

    Google Scholar Pub Med

    Blöchl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M J 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    Google Scholar Pub Med

    Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990

    Google Scholar Pub Med

    Spedding F H, Daane A and Herrmann K J 1956 Acta Crystal. 9 559

    Google Scholar Pub Med

    Pickard C J and Needs R J 2007 J. New Phys. 3 473

    Google Scholar Pub Med

    Chen Y, Hu Q M and Yang R 2011 Phys. Rev. B 84 132101

    Google Scholar Pub Med

    Chen Y, Hu Q M and Yang R 2012 Phys. Rev. Lett. 109 157004

    Google Scholar Pub Med

    Bader R F 1990 Atoms in molecules, Wiley Online Library

    Google Scholar Pub Med

    Yang J W, Gao T and Guo L Y 2013 Physica B 429 119

    Google Scholar Pub Med

    Lv J, Sun Y, Liu H and Ma Y 2020 Matter Radiat. Extrem. 5 068101

    Google Scholar Pub Med

    Di Cataldo S, von der Linden W and Boeri L 2022 npj Comput. Mater. 8 2

    Google Scholar Pub Med

    Allen P B and Dynes R C 1975 Phys. Rev. B 12 905

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(156) PDF downloads(2) Cited by(0)

Access History

First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)

Fund Project: 

Abstract: Recent studies have shown that the La- and Y-hydrides can exhibit significant superconducting properties under high pressures. In this paper, we investigate the stability, electronic and superconducting properties of LaYH$_{x}$ ($x=2$, 3, 6 and 8) under 0-200 GPa. It is found that LaYH$_{2}$ stabilizes in the $C2/m$ phase at ambient pressure, and transforms to the $Pmmn$ phase at 67 GPa. LaYH$_{3}$ stabilizes in the $C2/m$ phase at ambient pressure, and undergoes phase transitions of $C2/m\to P2_{1}/m\to R3m$ at 12 GPa and 87 GPa, respectively. LaYH$_{6}$ stabilizes in the $P4_{3}2_{1}2$ phase at ambient pressure, and undergoes phase transitions of $P4_{3}2_{1}2\to P4/mmm \to Cmcm$ at 28 GPa and 79 GPa, respectively. LaYH$_{8}$ stabilizes in the $Imma$ phase at 60 GPa and transforms to the $P4/mmm$ phase at 117 GPa. Calculations of the electronic band structures show that the $P4/mmm$-LaYH$_{8}$ and all phases of LaYH$_{2}$ and LaYH$_{3}$ exhibit metallic character. For the metallic phases, we then study their superconducting properties. The calculated superconducting transition temperatures ($T_{\rm c}$) are 0.47 K for $C2/m$-LaYH$_{2}$ at 0 GPa, 0 K for $C2/m$-LaYH$_{3}$ at 0 GPa, and 55.51 K for $P4/mmm$-LaYH$_{8}$ at 50 GPa.

Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return