2025 Volume 34 Issue 1
Article Contents

Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇). 2025: Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering, Chinese Physics B, 34(1): 014201. doi: 10.1088/1674-1056/ad8cc0
Citation: Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇). 2025: Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering, Chinese Physics B, 34(1): 014201. doi: 10.1088/1674-1056/ad8cc0

Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering

  • Received Date: 18/09/2024
    Accepted Date: 23/10/2024
  • Fund Project:

    Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202400624), the Natural Science Foundation of Chongqing CSTC (Grant No. CSTB2022NSCQBHX0020), the China Electronics Technology Group Corporation 44th Research Institute (Grant No. 6310001-2), the Project Grant “Noninvasive Sensing Measurement based on Terahertz Technology” from Province and MOE Collaborative Innovation Centre for New Generation Information Networking and Terminals, the Key Research Program of CQUPT on Interdisciplinary and Emerging Field (A2018-01), and the Venture & Innovation Support program for Chongqing Overseas Returnees Year 2022.

  • We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon-photon interaction via the backward stimulated Brillouin scattering (BSBS) process. The coherent photon-phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator. The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly. When the Duffing nonlinearity is weak, the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS. Our scheme may be extended to other quantum systems to study novel quantum effects.
  • 加载中
  • Shen Y R and Bloembergen N 1965 Phys. Rev. 137 A1787

    Google Scholar Pub Med

    Yariv A 1965 IEEE Journal of Quantum Electronics 1 28

    Google Scholar Pub Med

    Cheng R J, Li X X, Wang Q, Liu D J, Huang Z M, Lv S Y, Zhou T Z, Zhang S T, Li X M and Chen Z J 2024 Chin. Phys. B 33 015206

    Google Scholar Pub Med

    He X, Harris G I, Baker C G, Sawadsky A, Sfendla Y L, Sachkou Y P, Forstner S and Bowen W P 2020 Nat. Phys. 16 417

    Google Scholar Pub Med

    Lin G, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2014 Appl. Phys. Lett. 105 231103

    Google Scholar Pub Med

    Honda Y, Yoshiki W, Tetsumoto T, Fujii S, Furusawa K, Sekine N and Tanabe T 2018 Appl. Phys. Lett. 112 201105

    Google Scholar Pub Med

    Bai Y, Zhang M, Shi Q, Ding S, Qin Y, Xie Z, Jiang X and Xiao M 2021 Phys. Rev. Lett. 126 063901

    Google Scholar Pub Med

    Li J, Suh M G and Vahala K 2017 Optica 4 346

    Google Scholar Pub Med

    Bahl G, Tomes M, Marquardt F and Carmon T 2012 Nat. Phys. 3 203

    Google Scholar Pub Med

    Savchenkov A, Matsko A, Ilchenko V, Seidel D and Maleki L 2011 Opt. Lett. 36 3338

    Google Scholar Pub Med

    Bahl G, Zehnpfennig J, Tomes M and Carmon T 2011 Nat. Commun. 2 403

    Google Scholar Pub Med

    Dong C H, Shen Z, Zou C L, Zhang Y L, FuWand Guo G C 2015 Nat. Commun. 6 6193

    Google Scholar Pub Med

    Grudinin I S, Matsko A B and Maleki L 2009 Phys. Rev. Lett. 102 043902

    Google Scholar Pub Med

    Tomes M and Carmon T 2009 Phys. Rev. Lett. 102 113601

    Google Scholar Pub Med

    Enzian G, Szczykulska M, Silver J, Del Bino L, Zhang S, Walmsley I A, Del’Haye P and Vanner M R 2019 Optica 6 7

    Google Scholar Pub Med

    Enzian G, Price J J, Freisem L, Nunn J, Janousek J, Buchler B C, Lam P K and Vanner M R 2021 Phys. Rev. Lett. 126 033601

    Google Scholar Pub Med

    Nunnenkamp A, Sudhir V, Feofanov A, Roulet A and Kippenberg T 2014 Phys. Rev. Lett. 113 023604

    Google Scholar Pub Med

    Zhang Y L, Yang C S, Shen Z, Dong C H, Guo G C, Zou C L and Zou X B 2020 Phys. Rev. A 101 063836

    Google Scholar Pub Med

    Shen Z, Zhang Y L, Zou C L, Guo G C and Dong C H 2021 Phys. Rev. Lett. 126 163604

    Google Scholar Pub Med

    Kippenberg T J and Vahala K J 2008 Science 321 1172

    Google Scholar Pub Med

    Aspelmeyer M, Meystre P and Schwab K 2012 Physics Today 65 29

    Google Scholar Pub Med

    Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391

    Google Scholar Pub Med

    Chen S S, Zhang H, Song X K, Deng F G, Wang H B and Yang G J 2018 Annalen der Physik 530 1800239

    Google Scholar Pub Med

    Chen S S, Zhang H, Ai Q and Yang G J 2019 Phys. Rev. A 100 052306

    Google Scholar Pub Med

    Huang S and Agarwal G 2011 Phys. Rev. A 83 043826

    Google Scholar Pub Med

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520

    Google Scholar Pub Med

    Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M,Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69

    Google Scholar Pub Med

    Lü X Y, Liao J Q, Tian L and Nori F 2015 Phys. Rev. A 91 013834

    Google Scholar Pub Med

    Liao J Q, Law C, et al. 2011 Phys. Rev. A 83 033820

    Google Scholar Pub Med

    Chen S S, Meng S S, Deng H and Yang G J 2021 Annalen der Physik 533 2000343

    Google Scholar Pub Med

    Teufel J D, Donner T, Li D, Harlow J W, Allman M, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359

    Google Scholar Pub Med

    Meenehan S M, Cohen J D, MacCabe G S, Marsili F, Shaw M D and Painter O 2015 Phys. Rev. X 4 041002

    Google Scholar Pub Med

    Clark J B, Lecocq F, Simmonds RW, Aumentado J and Teufel J D 2017 Nature 541 191

    Google Scholar Pub Med

    Caves C M, Thorne K S, Drever RW, Sandberg V D and Zimmermann M 1980 Rev. Mod. Phys. 52 341

    Google Scholar Pub Med

    LaHaye M, Buu O, Camarota B and Schwab K 2004 Science 304 74

    Google Scholar Pub Med

    Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513

    Google Scholar Pub Med

    Jähne K, Genes C, Hammerer K, Wallquist M, Polzik E and Zoller P 2009 Phys. Rev. A 79 063819

    Google Scholar Pub Med

    Huang S and Agarwal G 2010 Phys. Rev. A 82 033811

    Google Scholar Pub Med

    Kronwald A, Marquardt F and Clerk A A 2013 Phys. Rev. A 88 063833

    Google Scholar Pub Med

    Wollman E E, Lei C, Weinstein A, Suh J, Kronwald A, Marquardt F, Clerk A A and Schwab K 2015 Science 349 952

    Google Scholar Pub Med

    Zhang R, Fang Y, Wang Y Y, Chesi S and Wang Y D 2019 Phys. Rev. A 99 043805

    Google Scholar Pub Med

    Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603

    Google Scholar Pub Med

    Schmidt M, Ludwig M and Marquardt F 2012 New J. Phys. 12 125005

    Google Scholar Pub Med

    Bai C H, Wang D Y, Zhang S, Liu S and Wang H F 2019 Photonics Research 7 1229

    Google Scholar Pub Med

    Blencowe M 2004 Physics Reports 395 159

    Google Scholar Pub Med

    Xiang Z L, Ashhab S, You J and Nori F 2013 Rev. Mod. Phys. 85 623

    Google Scholar Pub Med

    Jacobs K and Landahl A J 2009 Phys. Rev. Lett. 103 067201

    Google Scholar Pub Med

    Tian L 2011 Phys. Rev. B 84 035417

    Google Scholar Pub Med

    Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841

    Google Scholar Pub Med

    Gorodetksy M, Schliesser A, Anetsberger G, Deleglise S and Kippenberg T J 2010 Opt. Express 18 23236

    Google Scholar Pub Med

    Park Y S and Wang H 2009 Nat. Phys. 5 489

    Google Scholar Pub Med

    Schliesser A, Arcizet O, Rivière R, Anetsberger G and Kippenberg T J 2009 Nat. Phys. 5 509

    Google Scholar Pub Med

    Chan J, Alegre T M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89

    Google Scholar Pub Med

    Vitali D, Gigan S, Ferreira A, Böhm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(132) PDF downloads(4) Cited by(0)

Access History

Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering

Fund Project: 

Abstract: We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon-photon interaction via the backward stimulated Brillouin scattering (BSBS) process. The coherent photon-phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator. The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly. When the Duffing nonlinearity is weak, the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS. Our scheme may be extended to other quantum systems to study novel quantum effects.

Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return