2025 Volume 34 Issue 5
Article Contents

Wenchao Weng(翁文超), Hanyu Jiang(蒋涵羽), Xiangjie Kong(孔祥杰), and Giovanni Pau. 2025: Text-guided diverse-expression diffusion model for molecule generation, Chinese Physics B, 34(5): 050701. doi: 10.1088/1674-1056/adbedd
Citation: Wenchao Weng(翁文超), Hanyu Jiang(蒋涵羽), Xiangjie Kong(孔祥杰), and Giovanni Pau. 2025: Text-guided diverse-expression diffusion model for molecule generation, Chinese Physics B, 34(5): 050701. doi: 10.1088/1674-1056/adbedd

Text-guided diverse-expression diffusion model for molecule generation

  • Received Date: 18/11/2024
    Accepted Date: 21/02/2025
  • Fund Project:

    Project supported in part by the National Natural Science Foundation of China (Grant Nos. 62476247 and 62072409), the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2024C01214), and the Zhejiang Provincial Natural Science Foundation (Grant No. LR21F020003).

  • PACS: 07.05.Kf; 07.05.Mh; 07.05.Tp

  • The task of molecule generation guided by specific text descriptions has been proposed to generate molecules that match given text inputs. Mainstream methods typically use simplified molecular input line entry system (SMILES) to represent molecules and rely on diffusion models or autoregressive structures for modeling. However, the one-to-many mapping diversity when using SMILES to represent molecules causes existing methods to require complex model architectures and larger training datasets to improve performance, which affects the efficiency of model training and generation. In this paper, we propose a text-guided diverse-expression diffusion (TGDD) model for molecule generation. TGDD combines both SMILES and self-referencing embedded strings (SELFIES) into a novel diverse-expression molecular representation, enabling precise molecule mapping based on natural language. By leveraging this diverse-expression representation, TGDD simplifies the segmented diffusion generation process, achieving faster training and reduced memory consumption, while also exhibiting stronger alignment with natural language. TGDD outperforms both TGM-LDM and the autoregressive model MolT5-Base on most evaluation metrics.
  • 加载中
  • Tang Y, Yang Z, Yao Y, Zhou Y, Tan Y, Wang Z, Pan T, Xiong R, Sun J and Wei G 2024 Chin. Phys. B 33 030701

    Google Scholar Pub Med

    Weininger D 1988 Journal of Chemical Information and Computer Sciences 28 31

    Google Scholar Pub Med

    Weininger D, Weininger A and Weininger J L 1989 Journal of Chemical Information and Computer Sciences 29 97

    Google Scholar Pub Med

    Weininger D 1990 Journal of Chemical Information and Computer Sciences 30 237

    Google Scholar Pub Med

    Kingma D P 2013 arXiv:1312.6114 [stat.ML]

    Google Scholar Pub Med

    Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H and Bengio Y 2014 arXiv:1406.1078 [cs.CL]

    Google Scholar Pub Med

    Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-Lobato J M, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P and Aspuru-Guzik A 2018 ACS Central Science 4 268

    Google Scholar Pub Med

    Olivecrona M, Blaschke T, Engkvist O and Chen H 2017 Journal of Cheminformatics 9 48

    Google Scholar Pub Med

    Popova M, Isayev O and Tropsha A 2018 Science Advances 4 eaap7885

    Google Scholar Pub Med

    Ho J, Jain A and Abbeel P 2020 Advances in Neural Information Processing Systems 33 6840

    Google Scholar Pub Med

    Gong H, Liu Q, Wu S and Wang L 2024 Proceedings of the AAAI Conference on Artificial Intelligence,February 20-27, 2024, Vancouver, Canada, p. 109

    Google Scholar Pub Med

    Irwin R, Dimitriadis S, He J and Bjerrum E J 2022 Machine Learning: Science and Technology 3 015022

    Google Scholar Pub Med

    Wang S, Guo Y, Wang Y, Sun H and Huang J 2019 Proceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics, September 7-10, 2019, Niagara Falls, NY, USA, p. 429

    Google Scholar Pub Med

    Edwards C, Lai T, Ros K, Honke G, Cho K and Ji H 2022 2022 Conference on Empirical Methods in Natural Language Processing p. 375

    Google Scholar Pub Med

    Irwin R, Dimitriadis S, He J and Bjerrum E J 2022 Machine Learning: Science and Technology 3 015022

    Google Scholar Pub Med

    Weininger D, Weininger A and Weininger J L 1989 Journal of Chemical Information and Computer Sciences 29 97

    Google Scholar Pub Med

    Heller S R, McNaught A, Pletnev I, Stein S and Tchekhovskoi D 2015 Journal of Cheminformatics 7 23

    Google Scholar Pub Med

    O’Boyle N and Dalke A 2018 chemrxiv.7097960.v1

    Google Scholar Pub Med

    Krenn M, Häse F, Nigam A, Friederich P and Aspuru-Guzik A 2020 Machine Learning: Science and Technology 1 045024

    Google Scholar Pub Med

    Wu J N, Wang T, Chen Y, Tang L J, Wu H L and Yu R Q 2024 Nat. Commun. 15 4993

    Google Scholar Pub Med

    Yi Q, Chen X, Zhang C, Zhou Z, Zhu L and Kong X 2024 PeerJ Computer Science 10 e1905

    Google Scholar Pub Med

    Li X, Thickstun J, Gulrajani I, Liang P S and Hashimoto T B 2022 Advances in Neural Information Processing Systems 35 4328

    Google Scholar Pub Med

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I 2017 Proceedings of the 31st International Conference on Neural Information Processing Systems, December 4-9, 2017, Long Beach, California, USA, p. 6000

    Google Scholar Pub Med

    Austin J, Johnson D D, Ho J, Tarlow D and Van Den Berg R 2021 Advances in Neural Information Processing Systems 34 17981

    Google Scholar Pub Med

    Hoogeboom E, Satorras V G, Vignac C and Welling M 2022 International conference on machine learning, July 17-23, 2022, Baltimore, Maryland, USA, p. 8867

    Google Scholar Pub Med

    Xu M, Yu L, Song Y, Shi C, Ermon S and Tang J 2022 arXiv:2203.02923 [cs.LG]

    Google Scholar Pub Med

    Papinesi K 2002 Proc. 40th Actual Meeting of the Association for Computational Linguistics (ACL), July 7-12, 2002, Philadelphia, Pennsylvania, p. 311

    Google Scholar Pub Med

    Miller F P, Vandome A F and McBrewster J 2009 Levenshtein Distance: Information theory, Computer science, String (computer science), String metric, Damerau Levenshtein distance, Spell checker, Hamming distance (Alpha Press) 68

    Google Scholar Pub Med

    Durant J L, Leland B A, Henry D R and Nourse J G 2002 Journal of Chemical Information and Computer Sciences 42 1273

    Google Scholar Pub Med

    Schneider N, Sayle R A and Landrum G A 2015 Journal of Chemical Information and Modeling 55 2111

    Google Scholar Pub Med

    Rogers D and Hahn M 2010 Journal of Chemical Information and Modeling 50 742

    Google Scholar Pub Med

    Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W and Liu P J 2020 Journal of Machine Learning Research 21 1

    Google Scholar Pub Med

    Beltagy I, Lo K and Cohan A 2019 Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), November, 2019, Hong Kong, China, p. 3615

    Google Scholar Pub Med

    Devlin J, Chang M W, Lee K and Toutanova K 2019 Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), June 2-7, 2019, Minneapolis, Minnesota, p. 4171

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(260) PDF downloads(1) Cited by(0)

Access History

Text-guided diverse-expression diffusion model for molecule generation

Fund Project: 

Abstract: The task of molecule generation guided by specific text descriptions has been proposed to generate molecules that match given text inputs. Mainstream methods typically use simplified molecular input line entry system (SMILES) to represent molecules and rely on diffusion models or autoregressive structures for modeling. However, the one-to-many mapping diversity when using SMILES to represent molecules causes existing methods to require complex model architectures and larger training datasets to improve performance, which affects the efficiency of model training and generation. In this paper, we propose a text-guided diverse-expression diffusion (TGDD) model for molecule generation. TGDD combines both SMILES and self-referencing embedded strings (SELFIES) into a novel diverse-expression molecular representation, enabling precise molecule mapping based on natural language. By leveraging this diverse-expression representation, TGDD simplifies the segmented diffusion generation process, achieving faster training and reduced memory consumption, while also exhibiting stronger alignment with natural language. TGDD outperforms both TGM-LDM and the autoregressive model MolT5-Base on most evaluation metrics.

Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return